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1. Executive Summary 
The objective of the DARPA Active Templates program is to develop lightweight planning tools in support 

of special operations.  Rockwell Scientifics’ effort culminates in two software systems:  CModeler, a causal 

modeling Tool and SOFPlans, a graphical planning tool.  

This report is focused only on  the causal modeling tool which  provides a capability for capturing the 

cause/effect constraints in a special operations plan and for reasoning tasks in support of plan execution. 

The CModeler tool captures automatically a default causal model from the plan authoring input entered by 

users using domain specific interfaces, e.g. the SOFTools Temporal Plan Editor (TPE) in the special 

operations domain.  

We developed a computational approach based on the notion of potential causality to enable building a 

causal model elicitation environment that automates the process of building models as much as possible 

and updates those models incrementally with the plan authoring input. Instead of relying on knowledge 

bases and prior domain theories as in traditional knowledge acquisition, our approach uses only the 

temporal ordering of the actions and the task structure of the plan. The term “potential” is used to 

emphasize the uncertainty in the abduced causal ordering since no requirement is made on the existence of 

a complete domain theory as in standard partial order planning.  

We give in this report a formalization and algorithm for extracting a parsimonious description of a potential 

causality relation, which is presented to the modeler as a representation of the candidate space of sets of 

causal links consistent with the authored plan. We describe one main application of the tool for the special 

operations planning domain to support the task of run-time replanning. The replanning task takes the 

unexpected events in the execution of the plan (e.g., late or aborted actions) and uses the causal model to 

compute the impact on future actions in the remainder of the plan.  

We give in this report  a general formulation of the task of abducing potential causality from plan authoring 

input in a mixed initiative framework and provide a high-level description of the reasoning algorithms. We 

give  an example of a plan authored in SOFTools and describe the default model and the process of editing 

the causal graph. We use the same example to show how the causal model is subsequently used to support 

run-time replanning. The last sections in the report give our assessment of the lessons learned and our 

general conclusions.  
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2. Introduction 
In standard automated planning [Weld 1999] the goal is to automatically synthesize a plan from a 

representation of goals, states and operators. A plan operator is typically represented by a list of 

preconditions and post-conditions expressed as sentences in some formal logic. The preconditions state 

which conditions must hold before an operator can be executed and the post-conditions explicitly state the 

results of executing the operator. Generally speaking, automated planning amounts to a search for an 

ordering of the plan operators so that starting from the initial state, the operators preconditions are satisfied 

at every step in the ordering and the end state entails the goal state.  

In mixed initiative planning (MIP) plan synthesis uses a  collaborative planning paradigm in which humans 

and machines collaborate  to build effective plans more quickly and with greater reliability [Burstein & 

McDermott 1996].  The MIP approach alleviates the requirement for complete domain models as in 

automated generative planners and makes the approach viable for real-life large-scale planning domains 

such as in military and space. In MIP Human modelers and planning algorithms need to interact more 

effectively in order to develop safe efficient plans, and tools are required that ease the task for the modeler.  

Our causal modeling approach aims at supporting ease of plan entry during MIP in which a human planner 

authors a plan by formulating the planning tasks and selecting and ordering the actions. The approach takes 

the plan authoring input and generates a concise description of a set of causal links for the plan.  This 

causally linked plan can then be used for execution monitoring and plan revision management.  

The DARPA Active Templates is an innovative approach to MIP in which human planners build the plans 

by instantiating and linking templates, which are kind of frames that consist of attribute-value pairs 

representing stereotyped tasks or situations in the domain. An example of a template is a travel planning 

template [Frank et al. 2001] where the attributes may include origin, destination, weather, transportation, 

etc. In general, the templates maintain built-in  constraints and the attributes can be automatically defaulted 

using specialized functions and user interfaces. The user can also assign values to attributes and can 

override default values.  

The implementation of our approach in the CModeler software tool [El Fattah 2003], is centered on the 

special operation planning domain, the focus for the Active Templates program. The ontology for that  

domain is based on the notion of movement of assets from one place to another. Places represent fixed 

geographic locations over spans of time and the assets represent resources such as aircrafts, ships, 

helicopters, vehicles etc. The CModeler program has a number of interesting capabilities: 

 Automatic elicitation of causal models by interpreting temporal plan plots, input from the user’s 

adopted plan authoring interfaces (SOFTools TPE) 
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 The program leverages multiple sources:  the predefined ontology of the domain, the plan XML 

schema, the precedence ordering of the plan actions, the locality relation derived from the plan 

task hierarchy. 

 The program enables the user to view a hierarchical layout of the causal graph computed 

automatically and allows the user to amend the graph by adding or deleting causal links. 

 The program enables abstraction operations in the form of graph folding and unfolding to allow 

users to view the causal model at the desired representation levels; i.e., by shrinking unnecessary 

details and expanding interesting portions of the plan. 

 The program enables constraint specification on the timing of the actions and embeds a versatile 

constraint solver (based on declarative constraint logic programming CLP formulation) to generate 

the plan schedule that satisfy all constraints. 
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3. SOF Planning 
The ontology of the Special Operation Forces (SOF) planning domain is based on the notion of movement 

of assets from one place to another. Places represent fixed geographic locations over spans of time and the 

assets represent resources such as aircrafts, ships, helicopters, vehicles etc.  Figure 1 gives a partial 

specification of SOF plan objects in the Unified Modeling Language, UML. The Figure says that a plan is 

composed of any number of events, movements, and places. A movement has a start and an end which are 

special events, and is associated with two places which are the origin and destination for the movement. A 

place or a movement can be associated with any number of events which are local to the place or the 

movement. 

An event has type which can be plain or decisionpoint, a time to specify when the event should occur and a 

calltime to specify when the event actually occurs during execution. A place has a time interval specified 

by starttime and endtime, and a name intended to generically identify its physical location (or area of 

operation, in the case of a “mobile place” like a ship) and its role, e.g., FSB (forward staging base). A 

movement has assets which are the resources assigned to effect the move, e.g., two C-5 aircrafts.  

The objects in Figure 1 also define the plan templates.  Each template is a list of variable value pairs; the 

variables being the attributes of the objects and the values are restricted by domain constraints and the 

specified relations between the templates. For example, the duration of a movement is a function of the 

locations of the origin and destination of the movement and the assets used by the movement. An example 

of relations between the templates is that the location of the arrival event of a movement is the destination 

place for the movement.  

-id
-name
-plan_begin
-plan_span
-timeline_ref_hour

Plan

-id
-name
-type
-boundto
-time
-calltime
-ref_hour

event

-id
-name
-starttime
-endtime
-longitude
-latitude
-ref_hour

place

-id
-from
-to
-assets
-ref_hour

movement

1
2

1

*

*1

1

*

1
*

-name
-time
-calltime

start

-name
-time
-calltime

end

1
1

1
1

1
*

Figure 1 SOF plan objects (templates). 

 

Figure 2 Timing constraints 
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Figure 3 Example plan in SOFTools TPE 

n addition there also are integrity constraints enforced on the timing of the plan events and tasks. For 

xample, the arrival event must occur later than the departure event of the same movement; the arrival 

vent be earlier than the endtime for the destination of the movement; and so on. See Figure 2.  

sing a graphical editor, called SOFTools TPE, a planner can author a plan by a drag and drop of graphical 

cons representing the templates. Events and decision points are depicted as time points (diamond shaped). 

laces are diagrammed by horizontal lines specifying the start and end time. Movements are represented by 

rrows directed from an origin place to a destination.  
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An example of a plan diagram entered in SOFTools that we will use throughout this report is shown in 

Figure 3.  The plan can be summarized as two black-hawk (MH60s) flying to objective from ship to 

perform a “secure operation” before the arrival of a Chinook (MH-47). The Chinook flies to objective from 

a forward staging base (FSB) via helicopter landing zone (HLZ) then returns to FSB. A gunship (AC-

130U) is to perform the fire support to protect the Chinook flight from FSB and the black-hawks arrival at 

objective. The fire support gunship requires aerial refueling (AR) by a KC-135. Notice that some of the 

knowledge in our narration is no where represented in the plan diagram. Specifically the intention of using 

the fire support for the purpose of protecting the blackhwaks arrival at objective is not explicitly 

represented. Generally speaking the plan authoring input is only a partial specification of a plan focused 

only on the extensional representation only. The intentional representation of the plan  is not explicitly 

specified. By intentional representation we mean a formal specification of cause/effect relations between 

the actions in the plan that enable answering queries about plan change. For example what would be the 

effect of an event such as the start of the fire support being delayed?  In the absence of knowledge about 

causal links it is not possible to determine what effect such event will have on other events in the plan since 

we do not the independencies or the dependencies between the plan actions. 

The main motivation for this work has been to provide an automated tool to abduce a default causal model 

from the extensional temporal .plan representation.  We focus on the structure of the cause/ effect relations 

in the plan and represent the structure in the form of a directed acyclic graph whose nodes are the plan 

events/ actions and the links represent “causal links” and “threat resolution links” as commonly defined in 

partial-order planning [Weld 1999]. Informally, a causal link is a link between an action pair such that the 

postcondition for one action achieves a precondition necessary for the other.  While a threat resolution link 

is a temporal ordering that must be enforced to protect preconditions one action be clobbered by the 

postconditions of the other. 
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4. Potential Causality 
In this section we formalize our causal modeling approach in the context of automated planning. We give 

an abstract formulation of the plan authoring input and a general statement of the task of reasoning about 

potential causality. 

Plan authoring in our framework is a triple ( , , )T P ρ . T is a rooted directed tree whose nodes V(T) are the 

plan tasks. The root of the tree is the top-level task and the parent-children relation represents task 

decomposition. P is a totally ordered (t.o.) plan 1, , nP a a= 〈 K 〉 , represented by the pair , PA〈 p 〉  where A is 

the set of actions and Pp  is a total order defined by the t.o. plan: for 1 , ,   iff i P ji j n a a i j≤ ≤ <p . 

( )A V Tρ ⊂ ×  is a binary relation that associates the actions with the tasks. 

Given a plan authoring input ( , , )T P ρ  the problem we pose is to infer a partial-order plan (p.o. plan) given 

by a tuple  where p is a partial order on A,A〈 p〉 1. The partial order represents a parsimonious description 

of a potential causality relation on the actions consistent with the t.o. plan P. We represent the partial order 

by a directed acyclic graph (DAG), G=(A,E), called causal graph, such that there is a directed path from 

to 

p

ia ja in G iff . The directed edgesi jaa p ( , )i ja a E∈  represent both “causal links” and “threat resolution 

links” as commonly defined in partial-order planning [Weld 1999]. A causal link from to ia ja  means 

achieves some precondition for ia ja  while a threat resolution link is a temporal ordering that must be 

enforced to protect conditions achieved by some causal link. The causal graph G represents the p.o. plan 

which is a compact representation for a set of t.o. plans that can be obtained as the topological sort of G. A 

topological sort of G is a sequence obtained by ordering the nodes A such that if  then is 

before 

( , )i ja a E∈ ia

ja  in the sequence. 

                                                 
1 A partial order is a binary relation that is irreflexive, asymmetric and transitive. A binary relation on a set 
X  is a subset The relationship is irreflexive if for all .R X X⊂ × ( , ) in , then ( , ) .x x X X x x R× ∉  The 
relationship is asymmetric if for all ( , ) , then ( , ) .x y R y x R∈ ∉ The relationship is transitive if for all , ,x y z , 
if ( , )x y R∈ and then .( , )y z R∈ ( , )i ja a E∈ ( , )x z R∈   



  

 8 

Definition 1 Given a plan authoring input ( , , )T P ρΠ = ; ( , )PP A= p we say a partial order p on A is a Π-

compatible potential causality order if it satisfies  the following postulates: (i) the total order Pp obeys the 

partial order p ,i.e., P⊆p p ,a a ( )T (ii) if  two actions i j belong to same task t V∈ , i.e., ( , )a ti ρ∈

( , )a t

and 

j ρ∈ i j<then the actions must be ordered following the t.o. plan, i.e., i ja ap if  and j ia ap

j i> ,a a , ( )V T

if 

(iii) if  two actions i j belong to tasks i jt t ∈ ,i.e., ( , )a ti i ρ∈  and ( , )j ja t ρ∈ such that either 

it  or jt

ap <

is an ancestor of the other in T, then the actions must be ordered following the t.o. plan, i.e., 

i ja if i j  else j ia ap . 

The intuition behind  the potential causality postulates is as follows. The temporal ordering of the actions 

for each task guarantees that each action has effects that are required by the preconditions of the later 

actions in the same task and therefore provide sufficient condition on the causal ordering. The tasks whose 

actions  do not overlap (do not share actions) are likely to be independent and could be executed in any 

order. Tasks that are ancestor (or descendant) of one another in the tree are potentially inter-dependent  and 

therefore their temporal ordering should be preserved by the causal ordering. Potential causality provides a 

space of partial orders from the most to least constrained. The most constrained order is the input plan 

ordering Pp which is a complete ordering. The least constrained causal order can be defined using 

optimization criteria such as set minimality as defined next. 

Definition 2 Given two  Π-compatible potential causality orders ( , )P A= p and ' ( , ')P A= p  we say that 

'P  is less constrained than P iff ' Ìp p . A Π-compatible potential causality order ( , )P A= p is minimal 

iff there is no other Π-compatible potential causality order ' ( , ')P A= p such that 'P is less constrained 

than P. 

Example 1. Consider the planning problem of putting shoes and socks. A plan authoring input will have: 

(i) a tree  T  with a root node and two leaves which are the primitive tasks right foot and left foot; (ii) a t.o. 

plan e.g., ‹start, left sock, left shoe ,right sock, right shoe, finish›; (iii) mapping of actions to primitive 

tasks: {(start ,plan),(finish, plan),(left sock, left foot) ,(left shoe, left foot), (right sock, right  foot), (right 

shoe, right foot)}. Here start and finish are “dummy” actions to encode the initial state and the goal state for 

the plan task which is the root node of the tree. It is easy to see that a minimal potential causality order is 

represented by the causal graph having the directed edges {start→right sock, start→left sock, right sock 

→right shoe, left sock →left shoe, left shoe →finish, right shoe →finish}. The graph is a compact 

representation of 6 possible t.o. plans. 
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p

We now describe a polynomial time algorithm that computes a minimal potential causality graph (PCG) 

from a plan authoring input. The algorithm has two main steps. In the first step it computes a minimal 

potential causality order  starting from the complete input plan order Pp

(| ⋅ p

, and in the second returns a 

directed acyclic graph (DAG) from the transitive reduction of the partial order. The transitive reduction can 

be computed in O A . | | |)

P

P

Algorithm PCG
Input: authored plan =(T,P, ); P=(A, )
Output: potential causality graph, G

begin
   // initialize partial order

// compute minimal potential causality order
for each ( ')

{ ( ) | (
a,a

S t V T

ρΠ

←

∈
= ∈

p

p p

p

, ) } // tasks for 
' { ( ) | ( ', ') } // tasks for '

violation  false
repeat while  violation

for each  and ' '
if '  then violation  true
else if '  desc( )  desc( ') then violation  t

a t a
S t V T a t a

t S t S
S S

t t t t

ρ
ρ

∈
= ∈ ∈

←
¬
∈ ∈

∩ ≠ ∅ ←
∉ ∧ ∉ ← rue

loop
if  violation then   {( , ')}

//causal graph as transitive reduction
return minimal DAG, ( , ), such that there is a 

directed path from  to '  iff '
End

a a

G A E
a a a a

¬ ← −

=

p p

p
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5. Causal Modeler 
We built a tool that implements our approach for inferring potential causal links in the SOF planning 

domain. The tool, called Causal Modeler (or CModeler) [El Fattah 2003] captures cause/effect models from 

SOFTool plans based on potential causality (e.g. aircraft arrival depends on aircraft departure) CModeler 

can generate plans using the causal information and can automatically revise plans/ schedules when events 

occur late or are aborted and automatically update SOF execution checklist. The computing architecture is 

shown in Figure 4. 

 
 

 
 

Figure 4 Causal Modeler architecture 
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Figure 5  Causal modeler showing default graph. 

 
 
CModeler provides two dynamic execution capabilities for computing the effect of change during 

execution and for updating the plan execution checklist.  The changes currently supported are aborted and 

delayed events.  The causal models are represented as directed graphs whose nodes are plan elements (type 

movements; places; events and decision points) and the edges are directed from causes to effects. The 

structure of the causal model is represented as compound graph visualized in two views: tree view and 

graph view. The tree view shows the plan task hierarchy and the graph view shows the causal graph 

induced by contracting or expanding nodes in the tree. Figure 5 shows CModeler displaying the default 

causal graph for the plan example shown in Figure 3. 

CModeler allows full graphical editing capabilities for: 

a) adding/ removing causal links between events 

b) adding/ removing plan elements 
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c) editing properties of plan elements as in SOFTools.  CModeler applies causal heuristics to infer default 

causal model incrementally as plan elements are added. A user can enable/disable the default causal 

modeling by selecting or deselecting the use of heuristics from CModeler’s menu.  If the heuristics are 

deselected then no causal links are created automatically in the graph view and the user can 

graphically enter the causal dependencies. 

CModeler provides two ways to build causal models (1) interactive way - by authoring a plan interactively 

in CModeler; (2) non-interactive way- by authoring a plan in the SOFTools TPE then loading the plan into 

CModeler   

. 

Having an automated tool for default causal modeling has filled a need in this SOF planning domain for 

eliciting and capturing causal knowledge during the plan authoring. The causal views computed by 

CModeler are linked to the temporal and spatial plan views so that changes in one view can propagate to 

the other views. This is done by representing and capturing the temporal plan constraints and the causal 

dependencies between the actions in the plan.  By viewing the default causal graph a user is able to 

determine if causal links are missing or existing ones are spurious and can amend the default model by 

appropriately adding or deleting causal links.  

Incremental Causal Construction 
CModeler applies the heuristics as the user is plotting the temporal plan diagram. The heuristics are local to 

action subsets, enabling incremental construction of causal models. The basic idea of the incremental 

construction is a splicing operation; at each step replacing arcs in existing causal model by chains 

containing new nodes. Figure 6 shows a splicing operation after adding a plan-event type action to the plan. 

The Figure shows the colored node Act_i being added to the task tree and spliced in the current causal 

model by removing an edge between two nodes (the predecessor and successor in the temporal sequence) 

and adding a chain that links the new node to its neighbors. CModeler maintains two data structures for 

plan authoring the task tree and the causal graph. At each step in plan authoring a user can add to the plan a 

new object: a place task; a movement task; or an action of type plan-event, place-event, movement-event, 

or decision-point. CModeler interprets the added object and will perform any of these splicing operations: 
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Figure 6  Causal modeler showing the default causal graph. 

 
 If plan element is a place then add a place node to the tree. 

 If plan element is a movement then add a movement node to the tree and create two graph nodes 

for depart and arrive events and a causal link between them 

 If the plan element is an event bound to a place (movement) then add a child to the respective 

place (movement) node in the tree and splice the event node in the place (movement) subgraph 

 If the plan element is a plan event (decision point) then add a node to the tree and splice the event 

(decision) in the plan event (decision) subgraph. 

Abstraction 

For a large plan containing a large number of actions the causal graph can become too large to visualize 

and details become obscured. CModeler supports two abstraction strategies: (a) folding:  which conceals 

“unwanted” details of a graph allowing a user to temporarily hide certain nodes and edges and; (b) 

unfolding: which reintroduces the hidden details of folded nodes. At any time during a sequence of folding 

or unfolding operations, the causal graph has a valid topology allowing a user to perform layout. Thus, 

folding and unfolding can be used to coarsen and refine causal graph abstractions and to create new 

summary views, called causal views. We use the plan task hierarchy as a basis for computing abstraction 

views of the causal graph. The abstraction views are nested graphs [Sugiyama and Misue, 1991] 

(sometimes called a hierarchical or compound graph) allowing nodes to contain graphs. Each view is 

depicted as a directed graph whose nodes contain blobs denoting sets of nodes in the causal graph. Every 

set of interest is represented by a unique blob and is labeled by an associated task in the plan. The causal 

views have directed edges induced from the causal graph as shown in Figure 7. The Figure shows that an 

edge from node b to node c in the causal graph induces an edge from the blob T2 to the blob T1. At the 

most abstract level the causal view will have just one blob containing the entire graph. 
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CModeler shows causal views as a pair: a tree and a directed graph as shown in Figure 5. The views are 

coupled so that the leaves in the tree view always match up with the nodes in the graph view. Initially the 

tree in the tree view is the task hierarchy and the graph in the graph view is the “flat” causal graph. To fold 

an internal node in the tree view, a user clicks the minus (-) sign next to the node. This contracts the node in 

the tree view and coarsens the graph view by hiding the subgraph for the descendants of the contracted 

node inside a blob matching the contracted node in the tree view. Blobs are shown as rectangles and plan 

actions or events are shown as ellipses. 

To unfold a node in the tree view, a user clicks the plus (+) sign next to the node in the tree view. 

Unfolding will expand the tree one level below the unfolded node showing the children of that node in the 

tree view and the subgraph for the children in the graph view. Induced edges are created dynamically to and 

from the blobs in the graph views to maintain consistency with the “flat” graph. An induced edge is created 

from (to) a blob if there exists an edge in the graph view from (to) a descendant of the blob. Note that 

unlike the causal graph which is acyclic,  the abstracted causal views may contain directed cycles. For 

example, if in Figure 7 there is an additional arc from node a to node d then there will be a directed cycle 

between the blobs T1 and T2.The folding and unfolding explorations to coarsen and re-fine the causal 

views interactively can be implemented efficiently in time linear in the number of changes induced by any 

exploration operation [Buchsbaum and Westbrook, 2000] 

 

 

Figure 7 Causal views 
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6. Constraint Processing 
To enable specification of temporal constraints on the plan tasks, we use the causal graph to define a 

temporal constraint network. Temporal constraints are assigned to the nodes and edges of the graph and the 

solution to the constraint network determines the start and finish dates for all the plan tasks. 

 A solution of a constraint network is an assignment of values to the variables that satisfies all the 

constraints. A constraint network is consistent if there exists a solution. A constraint network is minimal if 

each primitive constraint is satisfied in a solution of the network; i.e. there are no primitive constraints that 

do not participate in at least one solution. Interesting problems (typically NP-hard) are to: 

(a) determine consistency  

(b) compute the minimal network 

(c) compute one or all solution(s) 

(d) check consistency of an assignment 

We restrict ourselves to binary constraint networks. The value domain is the real domain for all the time 

variables. The constraint specification for the plan events depend on whether the event is independent, i.e., 

having no parents in the causal graph.  If the event has parents then the constraints are specified as the 

minimum lag time from each parent that the event depends upon. If the event is independent then the 

constraint is specified as either before, on, or after the H-hour. Minimum lead time is specified for the 

before constraint and minimum lag time for the after constraint which both translate to inequality 

constraints. For the on constraint a lead or lag time can be specified which translates to an equality 

constraint.  

Figure 8 Simple temporal plan Figure 9 Causal graph for simple plan 
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The default constraints abduced from the temporal plan are specified as follows:

 For each independent event (root node in the causal graph) the constraint is before or after 

constraint with a minimum lead or lag time specified by the difference between the event time and 

the H-hour. 

 For each dependent event (having parents in the causal graph) create constraint for each directed 

edge and specify a minimum lag time computed as the difference between the event time and the 

time for its parent. The constraint for the dependent event is a set of inequalities; each specifying 

the time for the event minus the time for the parent be greater or equal the minimum lag time 

specified for the respective edge in the causal graph.

As an example consider the temporal plan shown in Figure 8. The plan consists of two bases, a movement 

from one base to the other and a place event at each base. The default causal graph is shown in Figure 9.  

The default constraints abduced for the model is shown in Figure 10. There are two independent events in 

the graph which are the base event #1 and base event #2. The Figure shows the constraint for base event #1 

being before H-hour with a lead time computed from the temporal plan.  An example of dependent event is 

“Dpt base” which has one parent “Base event #1” and the constraint is a lag time constraint relative to the 

parent with the lag computed from the difference between the event time of “Dpt base” and that of the 

parent. All the default constraints are given by inequalities with the value domain being the real values. The 

variables are the event times for the events in the plan plus the time of the plan H-hour. For the example, 

there are 4 variables and there are 5 constraints: 2 for the 2 root nodes plus a constraint for each directed 

edge in the causal graph. 

Figure 10 Default constraints for the simple plan 

 Figure 11 Solution of the default 

constraints 
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The solution for the constraint problem is computed by a constraint solver using the constraint logic 

programming language over real domain CLP(R). A query is created by assembling all the temporal 

constraints and assigning a temporal variable for each event. There can be many solutions that satisfy the 

constraints. To restrict the set of solutions we formulate the problem as an optimization problem by 

minimizing  the sum of all the event times. For our simple plan, the constraint query is stated as follows:

schedule([T0, T1, T2, T3, T4]):-  
 {T0 >= 0, T1>= 0, T2>= 0, T3>= 0, T4>= 0, T0-T1 >= 7248, 

T0-T2 >= 5808, T3-T1>= 1248, T4-T2>= 3888, T4-T3>= 4080, 
Z=T0+ T1+ T2+ T3+ T4}, 

 minimize(Z). 
 

The solution returned is as shown in Figure 11. Notice that the solution generally differs from the initial 

values assigned in the original temporal plan. For example, both the independent events are assigned the 

same time while in the initial plan they are not. 



  

 18 

7. Knowledge Capture 
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Figure 12  Potential causality graph with thick arcs added by domain expert 

 
 
An important result of our work is that it enables round-trip engineering between the causal and temporal  

representations of a plan. Planner in our SOF domain are accustomed to authoring plans based on the 

temporal/spatial view.  Having an automated tool for default causal modeling has filled a need for eliciting 

and capturing causal knowledge during the plan authoring. This means capturing and explicitly 

representing the plan constraints and the causal dependencies between the events in the plan.  
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By viewing the default causal graph a user is able to determine if some causal links are missing and can 

amend the default model by adding or deleting links  Our heuristic approach provides “useful” results with 

incomplete information and the results improve as additional knowledge sources become available, e.g. 

additional heuristics and more complete specification of  plan constraints. 

For example, the default causal model shown in Figure 12 has some of the causal relationships unspecified.  

Those are the relationships between the fire support and their objectives and between the aerial refueling 

and the fire support.   They are missing in the default model because no transaction constraints were 

specified. 

To amend the default causal graph the user will add those causal links as shown in Figure 3 in thick lines. 

The Figure shows 6 causal links added to the default model. Link 1 says the start of the fire support 

necessitates the start of aerial refueling movement. Link 2 says that being at aerial-refueling track enables 

the refueling action. Links 3, 4 specify the causal condition for the supported missions to begin. The causal 

links say the fire support “on-station” event enables the two Blackhawk to depart Ship and the Chinooks to 

depart drop zone Copper. Links 5, 6 specify the causal condition when the fire support is to end. The links 

say that the departure of both the Chinooks and the Blackhawk from objective Gold enables fire support 

“off-station” event.  
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8. Dynamic Execution 
One of the main functions enabled by our CModeler program is the support for dynamic plan execution. 

Most plans do not execute according to schedule and when this occurs there is limited time to respond.  

When changes occur during execution, the task of plan reconfiguration consists in determining all actions 

impacted by the change and recomputing the plan schedule to meet known  constraints on the affected 

actions. The affected actions can be determined by performing a reachability analysis on the causal graph.  

For example, if an action such as the departure of an aircraft is delayed then we must delay all its causally-

dependent actions (its descendants in the causal graph), e.g., the arrival of the aircraft at destination and the 

arrival-dependent chain of events.  Note that those descendants are not necessarily contiguous in the plan 

execution checklist making the determination of causal impact non-trivial. Also the temporal relationships 

inferred from the plan temporal diagram are not adequate to determine the required reconfiguration.  For 

large plans the reconfiguration task can be difficult and time-consuming to perform without automation. 

We have implemented the following algorithm for plan reconfiguration (PR) in CModeler.

Algorithm PR 
Input: checklist L; causal graph G=(A,E).  
Output: reconfigured checklist L’.  
  begin 
  S←Ø  //execution state 
  ‹a1,…,an›←topological sort of G 
  for i=1 to n do 
   if (calltime(ai,L)=?) //not yet executed 
   then if //has some parent in abort state 
       (x in pa(ai,G): state(x,abort) in S) 
     then //set action state to abort 
        S←S∪{state(ai,abort)}  
     else // max delay of the parents 
        ∆=max{ ∆x|x∈pa(ai,G),state(x,delay(∆x)∈S} 
        S←S∪{state(ai, ∆)}  
    else if //action has been aborted 
           (calltime(ai,L)=abort)  
         then //set action state to abort 
            S←S∪{state(ai,abort)}  
         else //compute delay 
            ∆=⎡ calltime(ai,L)- eventtime(ai,L)⎤  
  for i=1 to n do 
   if (state(ai,abort)∈ S) 
    then eventtime(ai,L)←abort 
   if (state(ai,delay(∆))∈ S) 
    then eventtime(ai,L)← eventtime(ai,L)+ ∆ 
  return L’← 
  end.
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The plan reconfiguration algorithm PR takes the plan causal graph and the execution state and outputs an 

updated checklist of the plan. A plan execution state consists of a determination in real-time for each event, 

relative to its call time and scheduled time, whether: the event is late; has not occurred; been aborted; called 

in early; called in on time; called in late. Our reconfiguration algorithm first orders the events along a 

causal order which is just a topological sort of the causal graph (which is acyclic). The algorithm 

propagates the execution state by aborting an event if any of its parents is aborted; otherwise delaying the 

event by the maximum delay over its parents. The algorithm shifts the scheduled time for delayed events 

and outputs a new execution list ordering the events by increasing event time.  

 

 

Figure 13 Reconfigured plan after fire support delayed 1 hour 
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Figure 13 shows a reconfiguration example for our SOF plan of Figure 3, where the depart event of the fire 

support gunship (AC-130U) is delayed 1 hour. The reconfiguration is computed based on the amended 

causal graph shown in Figure 3. Compared to the original plan in Figure 2, we see that (a) the event of KC-

135 at air-refueling track is shifted back 1 hour; (b) the departure of the chinook from Copper and the 

Blackhawk from Ship1 are all shifted by same amount to meet the fire-support coverage constraint;  (c) all 

causally dependent events are properly shifted; (d) all independent events remain unchanged, e.g. the 

decision point the departure of the Chinook from baseX and arrival to Copper. Note that the end times for 

places are shifted by proper amount to satisfy the condition that reconfigured place events be within the 

start and end time for the place. 
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9. Plan Reuse 
Our causal modeling approach can speed-up plan authoring by reusing previous cases from an experience 

library. The plan reuse consists of two parts: (1) retrieval of existing plans from the experience library that 

resemble current partial plan; (2) adaptation of retrieved plan to extend and complete current partial plan. 

An important task is to determine similarity between existing plan and current partial plan. We assume that 

previous plans are cached as cases in an experience library and each case consist of a plan annotated with 

its causal model. 

Causal graphs provide a structured framework for computing similarity between plans. During plan 

authoring we can start with a partial plan and query a historical database for best matching completed 

plans. Once we have a matching plan and a mapping between similar parts of the plan we can then adapt 

the matching plan to construct a suitable current plan. The matching can be performed at different levels of 

abstraction. 

The following is an algorithm for computing the similarity between pairs of plans. Similarity is evaluated 

using an index between 0 and 1, with 0 indicating no match  1  perfect match and  the higher the index the 

better the match.  The algorithm compares pairs of plans based on their causal models.

Algorithm P-Sim 
Input: Two causal graphs G1, G2 of two distinct plans.  
Output: Similarity measure between the two plans 
Begin 

Compute  causal orders d1=(u1,…,uk1}), d2=(v1,…,vk2) for G1 and G2; 
k1≤k . 2

index←1; #matches←0 
for i=1 to k1

match←false 
j=index 
while (not match∧j<k2) 

if (type(ui)==type(vj)) ∧(|pa(ui)|==pa(vj)|)  
then match=true;  
j=j+1 

if (match)  
then #matches←#matches+1; index←j 

return Similarity_index = #matches/k1; 
End. 
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Figure 14 Two plans: Team1 is air-based and Team2 is sea-based. 

 
The idea of the algorithm is to order the nodes in a causal ordering and determine for each pair of nodes 

whether they match based on their type and the number of parents (i.e., the size of the causal families).  The 

algorithm can be applied to compare plans based on task views (see Section 5.2)  by first folding the causal 

graphs and then applying the algorithm to the folded causal graphs where nodes are blobs representing plan 

tasks, each containing subsets of events. If the folded graphs have cycles then it can be reduced to an 

acyclic graph by lumping the strongly connected components in super blobs and then comparing the 

reduced graphs. 
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Figure 14 shows two SOF plans one air-based called Team1 and the other sea-based called Team2. Figure 

15 shows the causal graphs for both plans. The Figure also shows a causal ordering of the nodes in the 

graphs.  Clearly, there is a very close match between the two plans: 7 out of 8 nodes in the graph of plan-1 

match respective nodes in the graph of plan-2. The similarity mapping between plan-1 and plan-2 is: 1→1, 

2→2, 3→4, 4→5, 5→6, 6→7, 8→10. 

 
 

Figure 15 Comparing two causal graphs 

 



  

 

10. Related Work 
There has been work on capturing plan rationale and causal structure recovery of plans in the context of 

partial order planning [Kambhampati & Kedar 1994], case-based planning [Veloso & Carbonell 1993], and 

MIP [Veloso 1996]. A plan rationale aims to explicate why a plan is the way it is or the reason as to why 

the plan decisions are taken. Unlike previous work which requires complete domain theory of the planning 

domain, our approach can generate potential causal links in the plan by analyzing the temporal ordering and 

the task structure of the plan. Requiring complete domain models or expecting the human planner to 

specify every condition required by the plan operators is not realistic in large real-life planning applications 

such as in military and space.  Our approach complements another direction of research in AI planning 

focused on qualitative reasoning about plans [Myers 2001]. In that research the focus is on qualitative 

cause-effect relations and on calculus for reasoning about change. Our work is complementary in the sense 

that it offers an approach for initial causal models that can be supplemented with qualitative knowledge to 

address the problem of lack of complete domain models. 

In automated planning there has been work on the problem of removing unnecessary orderings in a total 

order plan (linear plan) in order to produce a “least constrained” [Veloso et al. 1990] or “shortest parallel 

execution” [Regnier & Fade 1991] partial-order plan. It has been shown that the problem is generally NP-

hard [Bäckström 1993]. Our work differs in that our partial order is representing potential causal links 

without requiring a domain theory and an automated  plan validity test as in [Bäckström 1993]. 
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           Figure 16 Temporal plan schema for SOFTools. 
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11. Lessons Learned 
The focus of our effort in the initial phase of the program had been to develop a relational database schema 

for active templates and a set of tools for analyzing the cause-effect relationships between assets, actions, 

and objectives in a plan. Specifically we built a relational schema and a program that maps the temporal 

plan XML file to the database. We advocated that bringing planning into the realm of relational databases 

has several advantages. Databases provide robust mechanisms (commit/rollback) for distributing 

applications. By developing a transactional model of plan construction, we can allow multiple users (for 

example, the ground, maritime and air components) to access and edit the same plan.  Our initial relational 

database approach has subsequently been subsumed by an extensible relational model called the Structured 

Data Model (SDM).  The goal of the SDM has been to provide a uniform, easy to use, and complete 

representation of planning data so that tools developed by various AcT researchers can more easily 

interoperate. 

The most important challenge has been to abduce the cause-effect structure of a special operation plan from 

the temporal representation entered in SOFTools Temporal Plan Editor.  The value of the causal graph was 

recognized early on as a representation that captures the dependencies in the plan that were not otherwise 

explicitly represented in the temporal plan representation. As we further developed our causal modeling 

approach the concept of the relational representation became secondary.  The primary focus emerged as the 

automated building of default causal models from the plan authoring input directly using the XML 

representation. The causal dependency depicted in the graph is only potential causality expressing 

consistent “happened before” relation. The heuristics exploit the locality inherent in the temporal editor 

where plans are composed of subplans of movements and places. The potential causality information can 

then be edited by the user by adding or removing edges to reflect causal semantics not captured in the 

temporal plan representation.  

Causal views can provide significant enhancement to the conventional approach of monitoring plan 

execution using checklists. Execution checklists can become very large, and events that indicate related 

activities at a high-level view of the plan may appear to be widely separated by other events and by time. 

And there may be a lot of irrelevant events mixed in with ones of interest. This means that when we view a 

large execution checklist, and an event that indicates a failed or delayed execution turns up, we cannot 

immediately focus on the other events in the checklist that led up to the failure, nor can we quickly 

determine impact on future events. Instead, we have to use a lot of knowledge about the mission and the 

executing plan to try to figure it out. The causal views can be used to monitor event logs at any abstraction 

level during plan execution, to detect inconsistencies with prior events, to determine violations of critical 

requirements and impact on future operations. 
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Causality can also enhance plan authoring in a different way. We can use causality to retrieve similar plans 

from historical databases. We developed an algorithm for computing complete or partial matching between 

plans based on their causal models. The basic idea of the algorithm is that two plans are similar if their 

causal structures overlap. That is, if they have consistent causal ordering and the nodes in the ordered 

causal families have the same type and same number of parents. We did some preliminary work in that 

direction in collaboration with other team members in the context of case based reasoning and hierarchical 

task networks. 
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12. Conclusions 
We developed in this project a computational approach and an automated tool for abducing parsimonious 

representation of causal dependencies in a plan authored by humans in mixed initiative environment. The 

tool is designed for the SOF planning domain and takes as input a plan created by a human planner using 

custom graphical interface (a program called SOFTools TPE) and outputs a minimal DAG representing a 

parsimonious potential causality graph. The nodes of the DAG are the actions and the directed arcs 

represent potential causal links and/or threat resolution links as commonly defined in partial order planners. 

The term “potential” emphasizes the uncertainty in the abduced links since no requirement is placed on the 

availability of domain theory. Our approach relies on the structural information only; namely the temporal 

ordering of the actions  and  the task hierarchy of the plan. The DAG is presented graphically to the human 

modeler for validation and further refinement.  The plan author can amend the potential causality structure 

by graphically adding or deleting directed arcs in the DAG. The validated causal graph captures the 

knowledge relevant to the causal dependencies in the plan and can then be used for reasoning tasks such as 

run-time replanning.  There are a number of areas for future extensions of the technology. One area is to 

exploit the causal model to speed up the plan authoring by fetching similar plans from a case-based library 

of plans. We have developed an algorithm to compute plan similarity that can be embedded in a case-based 

reasoning system. Another area is to integrate with qualitative reasoning approaches in planning for 

reasoning with incomplete information. Requiring complete domain models or expecting the human 

planner to specify every condition required by the plan operators is not realistic in large military and space 

applications. Our potential causality approach can be supplemented with qualitative knowledge to address 

the problem of lack of complete domain models. 
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